Change of variable formulæ for regularizing slowly decaying and oscillatory Cauchy and Hilbert transforms
نویسنده
چکیده
Formulæ are derived for expressing Cauchy and Hilbert transforms of a function f in terms of Cauchy and Hilbert transforms of f(xr). When r is an integer, this corresponds to evaluating the Cauchy transform of f(xr) at all choices of z1/r. Related formuæ for rational r result in a reduction to a generalized Cauchy transform living on a Riemann surface, which in turn is reducible to the standard Cauchy transform. These formulæ are used to regularize the behaviour of functions that are slowly decaying or oscillatory, in order to facilitate numerical computation and extend asymptotic results.
منابع مشابه
TWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کامل$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملA pr 2 00 9 HILBERT TRANSFORMS AND THE CAUCHY INTEGRAL IN EUCLIDEAN SPACE
We generalize the notions of harmonic conjugate functions and Hilbert transforms to higher dimensional euclidean spaces, in the setting of differential forms and the Hodge-Dirac system. These harmonic conjugates are in general far from being unique, but under suitable boundary conditions we prove existence and uniqueness of conjugates. The proof also yields invertibility results for a new class...
متن کاملHigher Derivations Associated with the Cauchy-Jensen Type Mapping
Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).
متن کاملUniversal behavior for averages of characteristic polynomials at the origin of the spectrum
It has been shown by Strahov and Fyodorov that averages of products and ratios of characteristic polynomials corresponding to Hermitian matrices of a unitary ensemble, involve kernels related to orthogonal polynomials and their Cauchy transforms. We will show that, for the unitary ensemble 1 Ẑn | detM |2αe−nV dM of n×n Hermitian matrices, these kernels have universal behavior at the origin of t...
متن کامل